If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-396x=0
a = 9; b = -396; c = 0;
Δ = b2-4ac
Δ = -3962-4·9·0
Δ = 156816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{156816}=396$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-396)-396}{2*9}=\frac{0}{18} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-396)+396}{2*9}=\frac{792}{18} =44 $
| 9x-18=3x-24 | | .4.5b=27 | | 10x+7-4x=37 | | 3(x+5)-10(x+2)=-54 | | 2.5x-3=4x+2 | | 9x+12=2x+30 | | 2y+17=y-5 | | 4q+30-14q/8=4 | | (8x+9)=(9x+2) | | 1/3•x=15 | | 178-146+2x=2x+26 | | 5+w/4=9 | | 10x+9=10x-3 | | 5x+8=38.x | | 14n=19 | | 24+5p=74 | | 9x+21x-6=6(5x+7) | | -13x+13=13x+13 | | 3(x+3(4x–5))=15x–24 | | 2(b-6)=8 | | 10-q/5=5 | | 8x+16x-8=6(4x+5) | | 6-8x=24 | | 22x^2+48x=0 | | 5(a-8)-7(5a-7)=69 | | 7y-2+4+3y=-25 | | 4.2x-3=0/5(8.4x+6) | | 6x-18=x | | 12+12=13x+12 | | -3(-2+9v)= | | 3x+13x-1=4(4x+7) | | 30b+53≥18b=83 |